首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Bayesian Estimation of Ammunition Demand Based on Multinomial Distribution
  • 本地全文:下载
  • 作者:Kang Li ; Xian-ming Shi ; Juan Li
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-11
  • DOI:10.1155/2021/5575335
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In view of the small sample size of combat ammunition trial data and the difficulty of forecasting the demand for combat ammunition, a Bayesian inference method based on multinomial distribution is proposed. Firstly, considering the different damage grades of ammunition hitting targets, the damage results are approximated as multinomial distribution, and a Bayesian inference model of ammunition demand based on multinomial distribution is established, which provides a theoretical basis for forecasting the ammunition demand of multigrade damage under the condition of small samples. Secondly, the conjugate Dirichlet distribution of multinomial distribution is selected as a prior distribution, and Dempster–Shafer evidence theory (D-S theory) is introduced to fuse multisource previous information. Bayesian inference is made through the Markov chain Monte Carlo method based on Gibbs sampling, and ammunition demand at different damage grades is obtained by referring to cumulative damage probability. The study result shows that the Bayesian inference method based on multinomial distribution is highly maneuverable and can be used to predict ammunition demand of different damage grades under the condition of small samples.
国家哲学社会科学文献中心版权所有