期刊名称:International Journal of Antennas and Propagation
印刷版ISSN:1687-5869
电子版ISSN:1687-5877
出版年度:2021
卷号:2021
页码:1-13
DOI:10.1155/2021/5519586
出版社:Hindawi Publishing Corporation
摘要:To predict the propagation of radio waves in the environment of dielectric ground and dielectric obstacles, a new two-way parabolic equation (2W-PE) method based on the domain decomposition principle and surface impedance boundary conditions (SIBC) is proposed. First, we decompose the obstacle area into different subdomains and derive the SIBC in each subdomain in detail; then, the discrete hybrid Fourier transform (DMFT) in the upper subdomain and finite difference (FD) algorithm in the lower subdomain is used to solve 2W-PE combined with SIBC, respectively. After that, we explain the algorithm steps in the process of calculating the total field, compared with the traditional 2W-PE, and then finally introduce the method of moments (MoM) combined with the enhanced discrete complex image (E-DCIM) method for accuracy verification of the new 2W-PE algorithm. The simulation results show that no matter how the obstacle medium parameters change, the results of 2W-PE method proposed in this paper and MoM are always in good agreement, which proves the accuracy of 2W-PE and its superiority in speed. Therefore, this paper provides a reliable and efficient method for solving the problem of radio wave propagation in the presence of obstacles, especially in the case of low-lossy obstacles.