首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins
  • 本地全文:下载
  • 作者:Liyang Wang ; Dantong Niu ; Xinjie Zhao
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2021
  • 卷号:10
  • 期号:4
  • 页码:809
  • DOI:10.3390/foods10040809
  • 出版社:MDPI Publishing
  • 摘要:Traditional food allergen identification mainly relies on in vivo and in vitro experiments, which often needs a long period and high cost. The artificial intelligence (AI)-driven rapid food allergen identification method has solved the above mentioned some drawbacks and is becoming an efficient auxiliary tool. Aiming to overcome the limitations of lower accuracy of traditional machine learning models in predicting the allergenicity of food proteins, this work proposed to introduce deep learning model—transformer with self-attention mechanism, ensemble learning models (representative as Light Gradient Boosting Machine (LightGBM) eXtreme Gradient Boosting (XGBoost)) to solve the problem. In order to highlight the superiority of the proposed novel method, the study also selected various commonly used machine learning models as the baseline classifiers. The results of 5-fold cross-validation showed that the area under the receiver operating characteristic curve (AUC) of the deep model was the highest (0.9578), which was better than the ensemble learning and baseline algorithms. But the deep model need to be pre-trained, and the training time is the longest. By comparing the characteristics of the transformer model and boosting models, it can be analyzed that, each model has its own advantage, which provides novel clues and inspiration for the rapid prediction of food allergens in the future.
  • 关键词:food allergens; allergenicity prediction; deep learning; ensemble learning; comparative analysis food allergens ; allergenicity prediction ; deep learning ; ensemble learning ; comparative analysis
国家哲学社会科学文献中心版权所有