期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:23
页码:12897-12903
DOI:10.1073/pnas.2000299117
出版社:The National Academy of Sciences of the United States of America
摘要:Over the past half century, migratory birds in North America have shown divergent population trends relative to resident species, with the former declining rapidly and the latter increasing. The role that climate change has played in these observed trends is not well understood, despite significant warming over this period. We used 43 y of monitoring data to fit dynamic species distribution models and quantify the rate of latitudinal range shifts in 32 species of birds native to eastern North America. Since the early 1970s, species that remain in North America throughout the year, including both resident and migratory species, appear to have responded to climate change through both colonization of suitable area at the northern leading edge of their breeding distributions and adaption in place at the southern trailing edges. Neotropical migrants, in contrast, have shown the opposite pattern: contraction at their southern trailing edges and no measurable shifts in their northern leading edges. As a result, the latitudinal distributions of temperate-wintering species have increased while the latitudinal distributions of neotropical migrants have decreased. These results raise important questions about the mechanisms that determine range boundaries of neotropical migrants and suggest that these species may be particularly vulnerable to future climate change. Our results highlight the potential importance of climate change during the nonbreeding season in constraining the response of migratory species to temperature changes at both the trailing and leading edges of their breeding distributions. Future research on the interactions between breeding and nonbreeding climate change is urgently needed.
关键词:Breeding Bird Survey ; species distribution modeling ; occupancy modeling ; range shifts ; migration