期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:27
页码:15504-15510
DOI:10.1073/pnas.2000851117
出版社:The National Academy of Sciences of the United States of America
摘要:Earth system models (ESMs) project that global warming suppresses biological productivity in the Subarctic Atlantic Ocean as increasing ocean surface buoyancy suppresses two physical drivers of nutrient supply: vertical mixing and meridional circulation. However, the quantitative sensitivity of productivity to surface buoyancy is uncertain and the relative importance of the physical drivers is unknown. Here, we present a simple predictive theory of how mixing, circulation, and productivity respond to increasing surface buoyancy in 21st-century global warming scenarios. With parameters constrained by observations, the theory suggests that the reduced northward nutrient transport, owing to a slower ocean circulation, explains the majority of the reduced productivity in a warmer climate. The theory also informs present-day biases in a set of ESM simulations as well as the physical underpinnings of their 21st-century projections. Hence, this theoretical understanding can facilitate the development of improved 21st-century projections of marine biogeochemistry and ecosystems.
关键词:ocean circulation ; biogeochemistry ; global warming