期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:35
页码:21079-21087
DOI:10.1073/pnas.1914135117
出版社:The National Academy of Sciences of the United States of America
摘要:The amplitude of the atmospheric CO 2 seasonal cycle has increased by 30 to 50% in the Northern Hemisphere (NH) since the 1960s, suggesting widespread ecological changes in the northern extratropics. However, substantial uncertainty remains in the continental and regional drivers of this prominent amplitude increase. Here we present a quantitative regional attribution of CO 2 seasonal amplification over the past 4 decades, using a tagged atmospheric transport model prescribed with observationally constrained fluxes. We find that seasonal flux changes in Siberian and temperate ecosystems together shape the observed amplitude increases in the NH. At the surface of northern high latitudes, enhanced seasonal carbon exchange in Siberia is the dominant contributor (followed by temperate ecosystems). Arctic-boreal North America shows much smaller changes in flux seasonality and has only localized impacts. These continental contrasts, based on an atmospheric approach, corroborate heterogeneous vegetation greening and browning trends from field and remote-sensing observations, providing independent evidence for regionally divergent ecological responses and carbon dynamics to global change drivers. Over surface midlatitudes and throughout the midtroposphere, increased seasonal carbon exchange in temperate ecosystems is the dominant contributor to CO 2 amplification, albeit with considerable contributions from Siberia. Representing the mechanisms that control the high-latitude asymmetry in flux amplification found in this study should be an important goal for mechanistic land surface models moving forward.