首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling
  • 本地全文:下载
  • 作者:Xiaomin Fang ; Zhisheng An ; Steven C. Clemens
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:40
  • 页码:24729-24734
  • DOI:10.1073/pnas.1922710117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Midlatitude Asia (MLA), strongly influenced by westerlies-controlled climate, is a key source of global atmospheric dust, and plays a significant role in Earth’s climate system . However, it remains unclear how the westerlies, MLA aridity, and dust flux from this region evolved over time. Here, we report a unique high-resolution eolian dust record covering the past 3.6 Ma, retrieved from the thickest loess borehole sequence (671 m) recovered to date, at the southern margin of the Taklimakan desert in the MLA interior. The results show that eolian dust accumulation, which is closely related to aridity and the westerlies, indicates existence of a dry climate, desert area, and stable land surface, promoting continuous loess deposition since at least ∼3.6 Ma. This region experienced long-term stepwise drying at ∼2.7, 1.1, and 0.5 Ma, coeval with a dominant periodicity shift from 41-ka cyclicity to 100-ka cyclicity between 1.1 Ma and 0.5 Ma. These features match well with global ice volume variability both in the time and frequency domains (including the Mid-Pleistocene Transition), highlighting global cooling-forced aridity and westerlies climate changes on these timescales. Numerical modeling demonstrates that global cooling can dry MLA and intensify the westerlies, which facilitates dust emission and transport, providing an interpretive framework. Increased dust may have promoted positive feedbacks (e.g., decreasing atmospheric CO 2 concentrations and modulating radiation budgets), contributing to further cooling. Unraveling the long-term evolution of MLA aridity and westerlies climate is an indispensable component of the unfolding mystery of global climate change.
  • 关键词:dust emission ; Taklimakan loess sequence ; Asian inland aridification ; global cooling ; Plio-Quaternary
国家哲学社会科学文献中心版权所有