首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Deafness mutation D572N of TMC1 destabilizes TMC1 expression by disrupting LHFPL5 binding
  • 本地全文:下载
  • 作者:Xiaojie Yu ; Qirui Zhao ; Xiaofen Li
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:47
  • 页码:29894-29903
  • DOI:10.1073/pnas.2011147117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.
  • 关键词:TMC1 ; LHFPL5 ; hair cells ; D572N mutation ; single-molecule pulldown (SiMPull)
国家哲学社会科学文献中心版权所有