首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Measuring Bayesian Robustness Using Rényi Divergence
  • 本地全文:下载
  • 作者:Luai Al-Labadi
  • 期刊名称:Stats
  • 电子版ISSN:2571-905X
  • 出版年度:2021
  • 卷号:4
  • 期号:2
  • 页码:251-268
  • DOI:10.3390/stats4020018
  • 出版社:MDPI AG
  • 摘要:This paper deals with measuring the Bayesian robustness of classes of contaminated priors. Two different classes of priors in the neighborhood of the elicited prior are considered. The first one is the well-known ϵ-contaminated class, while the second one is the geometric mixing class. The proposed measure of robustness is based on computing the curvature of Rényi divergence between posterior distributions. Examples are used to illustrate the results by using simulated and real data sets.
  • 关键词:Bayesian robustness; ϵ-contamination; geometric contamination; Rényi divergence Bayesian robustness ; ϵ-contamination ; geometric contamination ; Rényi divergence
国家哲学社会科学文献中心版权所有