摘要:A CO2 bubble column (CBC) has been developed as a body-temperature lab-scale water sterilization process for the inactivation of pathogens. Both CO2 and combustion gas bubbles inactivated Escherichia coli C-3000 (ATCC15597) with extraordinary efficiency in solutions with low alkalinity. The mechanisms of inactivation were not known. To characterise the phenomena a new first-order kinetic equation that correlates E. coli inactivation rates with a total alkalinity of the solutions has been developed as a first step towards understanding. This leads us to propose a new mechanism of inactivation.
其他摘要:A CO2 bubble column (CBC) has been developed as a body-temperature lab-scale water sterilization process for the inactivation of pathogens. Both CO2 and combustion gas bubbles inactivated Escherichia coli C-3000 (ATCC15597) with extraordinary efficiency in solutions with low alkalinity. The mechanisms of inactivation were not known. To characterise the phenomena a new first-order kinetic equation that correlates E.coli inactivation rates with a total alkalinity of the solutions has been developed as a first step towards understanding. This leads us to propose a new mechanism of inactivation.
关键词:E;coli; water reuse; carbon dioxide; combustion gas; alkalinity