首页    期刊浏览 2025年01月07日 星期二
登录注册

文章基本信息

  • 标题:Contributions to ventilation system demand response: a case study of an educational building
  • 本地全文:下载
  • 作者:Vahur Maask ; Alo Mikola ; Tarmo Korõtko
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:246
  • 页码:11001
  • DOI:10.1051/e3sconf/202124611001
  • 出版社:EDP Sciences
  • 摘要:The increasing share of volatile renewable energy in the electricity grid increases the importance of load flexibility and Demand Response for balancing electricity supply with demand. Flexible loads in office buildings (e.g. educational buildings) are heating, ventilation, and air conditioning (HVAC) systems. This paper focuses on ventilation systems as flexible loads for providing ancillary services to the grid. A number of studies consider ventilation system control based only on demand or discuss possibilities of improving system performance. Previous studies provide little or no information about ventilation system flexibility, e.g. amount of power modulation, the rate of change, and the duration of how long the power level can be held. The described information is required by aggregators to provide load aggregation services for transmission system operators (TSO). This paper proposes a robust and model-free approach to estimate ventilation system flexibility according to CO 2 concentration in extracted air. The proposed approach includes power regulation boundaries for the ventilation system and duration estimation when operating at the selected boundary. A case study is conducted on a ventilation system, which services an auditorium of an educational building. The current paper analyzes the proposed robust approach for estimating ventilation system flexibility and compares estimation to measured results.
  • 其他摘要:The increasing share of volatile renewable energy in the electricity grid increases the importance of load flexibility and Demand Response for balancing electricity supply with demand. Flexible loads in office buildings (e.g. educational buildings) are heating, ventilation, and air conditioning (HVAC) systems. This paper focuses on ventilation systems as flexible loads for providing ancillary services to the grid. A number of studies consider ventilation system control based only on demand or discuss possibilities of improving system performance. Previous studies provide little or no information about ventilation system flexibility, e.g. amount of power modulation, the rate of change, and the duration of how long the power level can be held. The described information is required by aggregators to provide load aggregation services for transmission system operators (TSO). This paper proposes a robust and model-free approach to estimate ventilation system flexibility according to CO 2 concentration in extracted air. The proposed approach includes power regulation boundaries for the ventilation system and duration estimation when operating at the selected boundary. A case study is conducted on a ventilation system, which services an auditorium of an educational building. The current paper analyzes the proposed robust approach for estimating ventilation system flexibility and compares estimation to measured results.
国家哲学社会科学文献中心版权所有