首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Improved Genetic Algorithm Integrated with Scheduling Rules for Flexible Job Shop Scheduling Problems
  • 本地全文:下载
  • 作者:Muhammad Kamal Amjad ; Shahid Ikramullah Butt ; Naveed Anjum
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:243
  • 页码:2010
  • DOI:10.1051/e3sconf/202124302010
  • 出版社:EDP Sciences
  • 摘要:This paper presents optimization of makespan for Flexible Job Shop Scheduling Problems (FJSSP) using an Improved Genetic Algorithm integrated with Rules (IGAR). Machine assignment is done by Genetic Algorithm (GA) and operation selection is done using priority rules. Improvements in GA include a new technique of adaptive probabilities and a new forced mutation technique that positively ensures the generation of new chromosome. The scheduling part also proposed an improved scheduling rule in addition to four standard rules. The algorithm is tested against two well-known benchmark data set and results are compared with various algorithms. Comparison shows that IGAR finds known global optima in most of the cases and produces improved results as compared to other algorithms.
  • 其他摘要:This paper presents optimization of makespan for Flexible Job Shop Scheduling Problems (FJSSP) using an Improved Genetic Algorithm integrated with Rules (IGAR). Machine assignment is done by Genetic Algorithm (GA) and operation selection is done using priority rules. Improvements in GA include a new technique of adaptive probabilities and a new forced mutation technique that positively ensures the generation of new chromosome. The scheduling part also proposed an improved scheduling rule in addition to four standard rules. The algorithm is tested against two well-known benchmark data set and results are compared with various algorithms. Comparison shows that IGAR finds known global optima in most of the cases and produces improved results as compared to other algorithms.
国家哲学社会科学文献中心版权所有