首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Research on DBN-based Evaluation of Distribution Network Reliability
  • 本地全文:下载
  • 作者:Kaiyu Zhang ; Shanshan Shi ; Shu Liu
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:242
  • 页码:3004
  • DOI:10.1051/e3sconf/202124203004
  • 出版社:EDP Sciences
  • 摘要:In order to accurately and efficiently analyze the reliability of distribution network, this paper proposes a method of analyzing the reliability of distribution network based on a deep belief network. The Deep Belief Network (DBN) is composed of limiting Boltzmann machine layer-by-layer stacking. It has a strong advantage of automatic feature extraction, which overcomes the shortcomings of traditional neural networks in extracting data features. The entire training process of DBN can be roughly divided into two stages: pre-training and fine-tuning.First of all, the pre-training of the DBN model is realized by training the Restricted Boltzmann Machine (RBM) layer by layer, then the BP algorithm is used for reverse fine-tuning to complete the training process of the entire network. finally, the reliability analysis of distribution network is performed by the trained DBN. Compared with the BP neural network method and the traditional Monte Carlo simulation method, it is verified that the proposed model of distribution network reliability analysis has high accuracy.
  • 其他摘要:In order to accurately and efficiently analyze the reliability of distribution network, this paper proposes a method of analyzing the reliability of distribution network based on a deep belief network. The Deep Belief Network (DBN) is composed of limiting Boltzmann machine layer-by-layer stacking. It has a strong advantage of automatic feature extraction, which overcomes the shortcomings of traditional neural networks in extracting data features. The entire training process of DBN can be roughly divided into two stages: pre-training and fine-tuning.First of all, the pre-training of the DBN model is realized by training the Restricted Boltzmann Machine (RBM) layer by layer, then the BP algorithm is used for reverse fine-tuning to complete the training process of the entire network. finally, the reliability analysis of distribution network is performed by the trained DBN. Compared with the BP neural network method and the traditional Monte Carlo simulation method, it is verified that the proposed model of distribution network reliability analysis has high accuracy.
国家哲学社会科学文献中心版权所有