首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
  • 本地全文:下载
  • 作者:Tong, Xin ; Ke, Zijun
  • 期刊名称:Frontiers in Psychology
  • 电子版ISSN:1664-1078
  • 出版年度:2021
  • 卷号:12
  • 页码:568
  • DOI:10.3389/fpsyg.2021.624588
  • 出版社:Frontiers Media
  • 摘要:Bayesian nonparametric (BNP) modeling has been developed and proven to be a powerful tool to analyze messy data with complex structures. Despite the increasing popularity of BNP modeling, it also faces challenges. One challenge is the estimation of the precision parameter in the Dirichlet process mixtures. In this study, we focus on a BNP growth curve model and investigate how noninformative prior, weakly informative prior, accurate informative prior, and inaccurate informative prior affect the model convergence, parameter estimation, and computation time. A simulation study has been conducted. We conclude that the noninformative prior for the precision parameter is less preferred because it yields a much lower convergence rate, and growth curve parameter estimates are not sensitive to informative priors.
  • 关键词:Nonparametric Bayesian; Robust method; growth curve modeling; Dirichlet process mixture; Prior; Precision parameter
国家哲学社会科学文献中心版权所有