首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:deconvolveR: A G-Modeling Program for Deconvolution and Empirical Bayes Estimation
  • 本地全文:下载
  • 作者:Balasubramanian Narasimhan ; Bradley Efron
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2020
  • 卷号:94
  • 期号:1
  • 页码:1-20
  • DOI:10.18637/jss.v094.i11
  • 出版社:University of California, Los Angeles
  • 摘要:Empirical Bayes inference assumes an unknown prior density g(θ) has yielded (unobservables) Θ 1 , Θ 2 , ..., Θ N , and each Θ i produces an independent observation X i from p i (X i Θ i ). The marginal density f i (X i ) is a convolution of the prior g and p i . The Bayes deconvolution problem is one of recovering g from the data. Although estimation of g - so called g-modeling - is difficult, the results are more encouraging if the prior g is restricted to lie within a parametric family of distributions. We present a deconvolution approach where g is restricted to be in a parametric exponential family, along with an R package deconvolveR designed for the purpose.
  • 关键词:Bayes deconvolution;g-modeling;empirical Bayes;missing species;R package deconvolveR.
  • 其他关键词:Bayes deconvolution;g-modeling;empirical Bayes;missing species;R package deconvolveR
国家哲学社会科学文献中心版权所有