首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Conditionally optimal classification based on CFAR and invariance property for blind receivers
  • 本地全文:下载
  • 作者:Masoud Naderpour ; Hossein Khaleghi Bizaki
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13634-021-00723-9
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper proposes a new approach for finding the conditionally optimal solution (the classifier with minimum error probability) for the classification problem where the observations are from the multivariate normal distribution. The optimal Bayes classifier does not exist when the covariance matrix is unknown for this problem. However, this paper proposes a classifier based on the constant false alarm rate (CFAR) and invariance property. The proposed classifier is optimal conditionally as it has the minimum error probability in a subset of solutions. This approach has an analogy to hypothesis testing problems where uniformly most powerful invariant (UMPI) and uniformly most powerful unbiased (UMPU) detectors are used instead of the non-existing optimal UMP detector. Furthermore, this paper investigates using the proposed classifier for modulation classification as an application in signal processing.
  • 关键词:Classification problem ; Hypothesis testing problem ; Modulation classification ; GLR ; Separating function estimation test (SFET)
国家哲学社会科学文献中心版权所有