首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Geometric property-based convolutional neural network for indoor object detection
  • 本地全文:下载
  • 作者:Xintao Ding ; Boquan Li ; Jinbao Wang
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2021
  • 卷号:18
  • 期号:1
  • 页码:1-11
  • DOI:10.1177/1729881421993323
  • 出版社:SAGE Publications
  • 摘要:Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.
  • 关键词:Indoor object detection ; robot application ; geometric constraint ; CNN
国家哲学社会科学文献中心版权所有