首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Improve the Effectiveness of Image Retrieval by Combining the Optimal Distance and Linear Discriminant Analysis
  • 本地全文:下载
  • 作者:Phuong Nguyen Thi Lan ; Tao Ngo Quoc ; Quynh Dao Thi Thuy
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:2
  • 页码:46-52
  • DOI:10.14569/IJACSA.2021.0120206
  • 出版社:Science and Information Society (SAI)
  • 摘要:In image retrieval with relevant feedback, classification and distance calculation have a great influence on image retrieval accuracy. In this paper, we propose an image retrieval method, called ODLDA (Image Retrieval using the optimal distance and linear discriminant analysis). The proposed method can effectively exploit user’s feedback from relevant and irrelevant image sets, which uses linear discriminant analysis to find a linear projection with an improved similarity measure. The experimental results performed on the two benchmark datasets have confirmed the superiority of the proposed method.
  • 关键词:Content-based image retrieval; deep learning; similarity measures; Mahalanobis metric distance; linear discriminant analysis
国家哲学社会科学文献中心版权所有