摘要:Dang et al. have given an algorithm that can find a Tarski fixed point in a k-dimensional lattice of width n using O(log^k n) queries [Chuangyin Dang et al., 2020]. Multiple authors have conjectured that this algorithm is optimal [Chuangyin Dang et al., 2020; Kousha Etessami et al., 2020], and indeed this has been proven for two-dimensional instances [Kousha Etessami et al., 2020]. We show that these conjectures are false in dimension three or higher by giving an O(log² n) query algorithm for the three-dimensional Tarski problem, which generalises to give an O(log^{k-1} n) query algorithm for the k-dimensional problem when k ⥠3.
关键词:query complexity; Tarski fixed points; total function problem