首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Commercial wind turbines modeling using single and composite cumulative probability density functions
  • 本地全文:下载
  • 作者:Othman A. M. Omar ; Hamdy M. Ahmed ; Reda A. Elbarkouky
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:47
  • DOI:10.11591/ijece.v11i1.pp47-56
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:As wind turbines more widely used with newer manufactured types and larger electrical power scales, a brief mathematical modelling for these wind turbines operating power curves is needed for optimal site matching selections. In this paper, 24 commercial wind turbines with different ratings and different manufactures are modelled using single cumulative probability density functions modelling equations. A new mean of a composite cumulative probability density function is used for better modelling accuracy. Invasive weed optimization algorithm is used to estimate different models designing parameters. The best cumulative density function model for each wind turbine is reached through comparing the RMSE of each model. Results showed that Weibull-Gamma composite is the best modelling technique for 37.5% of the reached results.
国家哲学社会科学文献中心版权所有