期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2020
卷号:10
期号:2
页码:1495-1506
DOI:10.11591/ijece.v10i2.pp1495-1506
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:This article presents a system focused on the detection of three types of abnormal walk patterns caused by neurological diseases, specifically Parkinsonian gait, Hemiplegic gait, and Spastic Diplegic gait. A Kinect sensor is used to extract the Skeleton from a person during its walk, to then calculate four types of bases that generate different sequences from the 25 points of articulations that the Skeleton gives. For each type of calculated base, a recurrent neural network (RNN) is trained, specifically a Long short-term memory (LSTM). In addition, there is a graphical user interface that allows the acquisition, training, and testing of trained networks. Of the four trained networks, 98.1% accuracy is obtained with the database that was calculated with the distance of each point provided by the Skeleton to the Hip-Center point.