首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Interaction of polyethylene glycol with cytochrome c investigated via in vitro and in silico approaches
  • 本地全文:下载
  • 作者:Zahoor Ahmad Parray ; Faizan Ahmad ; Mohamed F. Alajmi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:6475
  • DOI:10.1038/s41598-021-85792-4
  • 出版社:Springer Nature
  • 摘要:Abstract One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c ). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c ( a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV–Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.
  • 其他摘要:Abstract One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c ). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c ( a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV–Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.
国家哲学社会科学文献中心版权所有