首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
  • 本地全文:下载
  • 作者:Shichun Yang ; Sida Zhou ; Yang Hua
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:5805
  • DOI:10.1038/s41598-021-84729-1
  • 出版社:Springer Nature
  • 摘要:Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.
  • 其他摘要:Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.
国家哲学社会科学文献中心版权所有