摘要:Abstract The concept of Pan-Assay Interference Compounds (PAINS) is regarded as a threat to the recognition of the broad bioactivity of natural products. Based on the established relationship between altered membrane dipole potential and transmembrane protein conformation and function, we investigate here polyphenols' ability to induce changes in cell membrane dipole potential. Ultimately, we are interested in finding a tool to prevent polyphenol PAINS-type behavior and produce compounds less prone to untargeted and promiscuous interactions with the cell membrane. Di-8-ANEPPS fluorescence ratiometric measurements suggest that planar lipophilic polyphenols—phloretin, genistein and resveratrol—act by decreasing membrane dipole potential, especially in cholesterol-rich domains such as lipid rafts, which play a role in important cellular processes. These results provide a mechanism for their labelling as PAINS through their ability to disrupt cell membrane homeostasis. Aiming to explore the role of C -glucosylation in PAINS membrane-interfering behavior, we disclose herein the first synthesis of 4-glucosylresveratrol, starting from 5-hydroxymethylbenzene-1,3-diol, via C -glucosylation, oxidation and Horner-Wadsworth-Emmons olefination, and resynthesize phloretin and genistein C -glucosides. We show that C-glucosylation generates compounds which are no longer able to modify membrane dipole potential. Therefore, it can be devised as a strategy to generate bioactive natural product derivatives that no longer act as membrane dipole potential modifiers. Our results offer a new technology towards rescuing bioactive polyphenols from their PAINS danger label through C–C ligation of sugars.
其他摘要:Abstract The concept of Pan-Assay Interference Compounds (PAINS) is regarded as a threat to the recognition of the broad bioactivity of natural products. Based on the established relationship between altered membrane dipole potential and transmembrane protein conformation and function, we investigate here polyphenols' ability to induce changes in cell membrane dipole potential. Ultimately, we are interested in finding a tool to prevent polyphenol PAINS-type behavior and produce compounds less prone to untargeted and promiscuous interactions with the cell membrane. Di-8-ANEPPS fluorescence ratiometric measurements suggest that planar lipophilic polyphenols—phloretin, genistein and resveratrol—act by decreasing membrane dipole potential, especially in cholesterol-rich domains such as lipid rafts, which play a role in important cellular processes. These results provide a mechanism for their labelling as PAINS through their ability to disrupt cell membrane homeostasis. Aiming to explore the role of C -glucosylation in PAINS membrane-interfering behavior, we disclose herein the first synthesis of 4-glucosylresveratrol, starting from 5-hydroxymethylbenzene-1,3-diol, via C -glucosylation, oxidation and Horner-Wadsworth-Emmons olefination, and resynthesize phloretin and genistein C -glucosides. We show that C-glucosylation generates compounds which are no longer able to modify membrane dipole potential. Therefore, it can be devised as a strategy to generate bioactive natural product derivatives that no longer act as membrane dipole potential modifiers. Our results offer a new technology towards rescuing bioactive polyphenols from their PAINS danger label through C–C ligation of sugars.