首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Topological structures, spontaneous symmetry breaking and energy spectra in dipole hexagonal lattices
  • 本地全文:下载
  • 作者:Josep Batle
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:4154
  • DOI:10.1038/s41598-021-83359-x
  • 出版社:Springer Nature
  • 摘要:Abstract The interplay between the special triangular/hexagonal two dimensional lattice and the long range dipole–dipole interaction gives rise to topological defects, specifically the vortex, formed by a particular arrangement of the interacting classic dipoles. The nature of such vortices has been traditionally explained on the basis of numerical evidence. Here we propose the emerging formation of vortices as the natural minimum energy configuration of interacting (in-plane) two-dimensional dipoles based on the mechanism of spontaneous symmetry breaking. As opposed to the quantal case, where spin textures such as skyrmions or bimerons occur due to non-linearities in their Hamiltonian, it is still possible to witness classic topological structures due only to the nature of the dipole–dipole force. We shall present other (new) topological structures for the in-plane honeycomb lattice, as well as for two-dimensional out-of-plane dipoles. These structures will prove to be essential in the minimum energy configurations for three-dimensional simple hexagonal and hexagonal-closed-packed structures, whose energies in the bulk are obtained for the first time.
  • 其他摘要:Abstract The interplay between the special triangular/hexagonal two dimensional lattice and the long range dipole–dipole interaction gives rise to topological defects, specifically the vortex, formed by a particular arrangement of the interacting classic dipoles. The nature of such vortices has been traditionally explained on the basis of numerical evidence. Here we propose the emerging formation of vortices as the natural minimum energy configuration of interacting (in-plane) two-dimensional dipoles based on the mechanism of spontaneous symmetry breaking. As opposed to the quantal case, where spin textures such as skyrmions or bimerons occur due to non-linearities in their Hamiltonian, it is still possible to witness classic topological structures due only to the nature of the dipole–dipole force. We shall present other (new) topological structures for the in-plane honeycomb lattice, as well as for two-dimensional out-of-plane dipoles. These structures will prove to be essential in the minimum energy configurations for three-dimensional simple hexagonal and hexagonal-closed-packed structures, whose energies in the bulk are obtained for the first time.
国家哲学社会科学文献中心版权所有