首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Highlighting the potential utility of MBP crystallization chaperone for Arabidopsis BIL1/BZR1 transcription factor-DNA complex
  • 本地全文:下载
  • 作者:Shohei Nosaki ; Tohru Terada ; Akira Nakamura
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3879
  • DOI:10.1038/s41598-021-83532-2
  • 出版社:Springer Nature
  • 摘要:The maltose-binding protein (MBP) fusion tag is one of the most commonly utilized crystallization chaperones for proteins of interest. Recently, this MBP-mediated crystallization technique was adapted to Arabidopsis thaliana (At) BRZ-INSENSITIVE-LONG (BIL1)/BRASSINAZOLE-RESISTANT (BZR1), a member of the plant-specific BZR TFs, and revealed the first structure of AtBIL1/BZR1 in complex with target DNA. However, it is unclear how the fused MBP affects the structural features of the AtBIL1/BZR1-DNA complex. In the present study, we highlight the potential utility of the MBP crystallization chaperone by comparing it with the crystallization of unfused AtBIL1/BZR1 in complex with DNA. Furthermore, we assessed the validity of the MBP-fused AtBIL1/BZR1-DNA structure by performing detailed dissection of crystal packings and molecular dynamics (MD) simulations with the removal of the MBP chaperone. Our MD simulations define the structural basis underlying the AtBIL1/BZR1-DNA assembly and DNA binding specificity by AtBIL1/BZR1. The methodology employed in this study, the combination of MBP-mediated crystallization and MD simulation, demonstrates promising capabilities in deciphering the protein-DNA recognition code.
  • 其他摘要:Abstract The maltose-binding protein (MBP) fusion tag is one of the most commonly utilized crystallization chaperones for proteins of interest. Recently, this MBP-mediated crystallization technique was adapted to Arabidopsis thaliana (At) BRZ-INSENSITIVE-LONG (BIL1)/BRASSINAZOLE-RESISTANT (BZR1), a member of the plant-specific BZR TFs, and revealed the first structure of AtBIL1/BZR1 in complex with target DNA. However, it is unclear how the fused MBP affects the structural features of the AtBIL1/BZR1-DNA complex. In the present study, we highlight the potential utility of the MBP crystallization chaperone by comparing it with the crystallization of unfused AtBIL1/BZR1 in complex with DNA. Furthermore, we assessed the validity of the MBP-fused AtBIL1/BZR1-DNA structure by performing detailed dissection of crystal packings and molecular dynamics (MD) simulations with the removal of the MBP chaperone. Our MD simulations define the structural basis underlying the AtBIL1/BZR1-DNA assembly and DNA binding specificity by AtBIL1/BZR1. The methodology employed in this study, the combination of MBP-mediated crystallization and MD simulation, demonstrates promising capabilities in deciphering the protein-DNA recognition code.
国家哲学社会科学文献中心版权所有