首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Eco friendly nanofluidic platforms using biodegradable nanoporous materials
  • 本地全文:下载
  • 作者:Sungmin Park ; Seongjun Hong ; Junsuk Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1
  • DOI:10.1038/s41598-021-83306-w
  • 出版社:Springer Nature
  • 摘要:Abstract Splendid advancement of micro/nanofluidic researches in the field of bio- and chemical-analysis enables various ubiquitous applications such as bio-medical diagnostics and environmental monitoring, etc. In such devices, nanostructures are the essential elements so that the nanofabrication methods have been major issues since the last couple of decades. However, most of nanofabrication methods are sophisticated and expensive due to the requirement of high-class cleanroom facilities, while low-cost and biocompatible materials have been already introduced in the microfluidic platforms. Thus, an off-the-shelf and biodegradable material for those nanostructures can complete the concept of an eco-friendly micro/nanofluidic platform. In this work, biodegradable materials originated from well-known organisms such as human nail plate and denatured hen egg (albumen and yolk) were rigorously investigated as a perm-selective nanoporous membrane. A simple micro/nanofluidic device integrated with such materials was fabricated to demonstrate nanofluidic phenomena. These distinctive evidences (the visualization of ion concentration polarization phenomenon, ohmic/limiting/over-limiting current behavior and surface charge-governed conductance) can fulfill the requirements of functional nanostructures for the nanofluidic applications. Therefore, while these materials were less robust than nano-lithographically fabricated structures, bio-oriented perm-selective materials would be utilized as a one of key elements of the biodegradable and eco friendly micro/nanofluidic applications.
  • 其他摘要:Abstract Splendid advancement of micro/nanofluidic researches in the field of bio- and chemical-analysis enables various ubiquitous applications such as bio-medical diagnostics and environmental monitoring, etc. In such devices, nanostructures are the essential elements so that the nanofabrication methods have been major issues since the last couple of decades. However, most of nanofabrication methods are sophisticated and expensive due to the requirement of high-class cleanroom facilities, while low-cost and biocompatible materials have been already introduced in the microfluidic platforms. Thus, an off-the-shelf and biodegradable material for those nanostructures can complete the concept of an eco-friendly micro/nanofluidic platform. In this work, biodegradable materials originated from well-known organisms such as human nail plate and denatured hen egg (albumen and yolk) were rigorously investigated as a perm-selective nanoporous membrane. A simple micro/nanofluidic device integrated with such materials was fabricated to demonstrate nanofluidic phenomena. These distinctive evidences (the visualization of ion concentration polarization phenomenon, ohmic/limiting/over-limiting current behavior and surface charge-governed conductance) can fulfill the requirements of functional nanostructures for the nanofluidic applications. Therefore, while these materials were less robust than nano-lithographically fabricated structures, bio-oriented perm-selective materials would be utilized as a one of key elements of the biodegradable and eco friendly micro/nanofluidic applications.
国家哲学社会科学文献中心版权所有