首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Molecular characterization of a soybean FT homologue, GmFT7
  • 本地全文:下载
  • 作者:Senhao Zhang ; Mohan B. Singh ; Prem L. Bhalla
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3651
  • DOI:10.1038/s41598-021-83305-x
  • 出版社:Springer Nature
  • 摘要:Abstract Soybean ( Glycine max ) is a vital oilseed legume crop that provides protein and oil for humans and feedstock for animals. Flowering is a prerequisite for seed production. Floral transition, from vegetative to reproductive stage, in a plant, is regulated by environmental (light, temperature) and endogenous factors. In Arabidopsis, Flowering Locus T (FT) protein is shown to be a mobile signal that moves from leaf to shoot apical meristem to induce flowering. However, FTs role in soybean is not fully resolved due to the presence of multiple (ten) homologs in the genome. Two of the ten FT homologs ( GmFT2a and GmFT5a ) have a role in the floral transition while GmFT1a and GmFT4 suppress soybean flowering. Recent deep sequencing data revealed that six FT homologs are expressed in shoot apical meristem and leaves during floral transition. One FT homolog, GmFT7 showed strong expression during soybean floral transition. Though bioinformatic analyses revealed that GmFT7 had high similarity with GmFT2a, ectopic GmFT7 expression in Arabidopsis could not promote flowering or rescue the late-flowering phenotype of Arabidopsis ft-10 mutant.
  • 其他摘要:Abstract Soybean ( Glycine max ) is a vital oilseed legume crop that provides protein and oil for humans and feedstock for animals. Flowering is a prerequisite for seed production. Floral transition, from vegetative to reproductive stage, in a plant, is regulated by environmental (light, temperature) and endogenous factors. In Arabidopsis, Flowering Locus T (FT) protein is shown to be a mobile signal that moves from leaf to shoot apical meristem to induce flowering. However, FTs role in soybean is not fully resolved due to the presence of multiple (ten) homologs in the genome. Two of the ten FT homologs ( GmFT2a and GmFT5a ) have a role in the floral transition while GmFT1a and GmFT4 suppress soybean flowering. Recent deep sequencing data revealed that six FT homologs are expressed in shoot apical meristem and leaves during floral transition. One FT homolog, GmFT7 showed strong expression during soybean floral transition. Though bioinformatic analyses revealed that GmFT7 had high similarity with GmFT2a, ectopic GmFT7 expression in Arabidopsis could not promote flowering or rescue the late-flowering phenotype of Arabidopsis ft-10 mutant.
国家哲学社会科学文献中心版权所有