首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method
  • 本地全文:下载
  • 作者:Phasit Charoenkwan ; Wararat Chiangjong ; Vannajan Sanghiran Lee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3017
  • DOI:10.1038/s41598-021-82513-9
  • 出版社:Springer Nature
  • 摘要:Abstract As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
  • 其他摘要:Abstract As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
国家哲学社会科学文献中心版权所有