首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:Identifying the signature of prospective motor control in children with autism
  • 本地全文:下载
  • 作者:Andrea Cavallo ; Luca Romeo ; Caterina Ansuini
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3165
  • DOI:10.1038/s41598-021-82374-2
  • 出版社:Springer Nature
  • 摘要:Abstract Failure to develop prospective motor control has been proposed to be a core phenotypic marker of autism spectrum disorders (ASD). However, whether genuine differences in prospective motor control permit discriminating between ASD and non-ASD profiles over and above individual differences in motor output remains unclear. Here, we combined high precision measures of hand movement kinematics and rigorous machine learning analyses to determine the true power of prospective movement data to differentiate children with autism and typically developing children. Our results show that while movement is unique to each individual, variations in the kinematic patterning of sequential grasping movements genuinely differentiate children with autism from typically developing children. These findings provide quantitative evidence for a prospective motor control impairment in autism and indicate the potential to draw inferences about autism on the basis of movement kinematics.
  • 其他摘要:Abstract Failure to develop prospective motor control has been proposed to be a core phenotypic marker of autism spectrum disorders (ASD). However, whether genuine differences in prospective motor control permit discriminating between ASD and non-ASD profiles over and above individual differences in motor output remains unclear. Here, we combined high precision measures of hand movement kinematics and rigorous machine learning analyses to determine the true power of prospective movement data to differentiate children with autism and typically developing children. Our results show that while movement is unique to each individual, variations in the kinematic patterning of sequential grasping movements genuinely differentiate children with autism from typically developing children. These findings provide quantitative evidence for a prospective motor control impairment in autism and indicate the potential to draw inferences about autism on the basis of movement kinematics.
国家哲学社会科学文献中心版权所有