首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The dynamics of explore–exploit decisions reveal a signal-to-noise mechanism for random exploration
  • 本地全文:下载
  • 作者:Samuel F. Feng ; Siyu Wang ; Sylvia Zarnescu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3077
  • DOI:10.1038/s41598-021-82530-8
  • 出版社:Springer Nature
  • 摘要:Abstract Growing evidence suggests that behavioral variability plays a critical role in how humans manage the tradeoff between exploration and exploitation. In these decisions a little variability can help us to overcome the desire to exploit known rewards by encouraging us to randomly explore something else. Here we investigate how such ‘random exploration’ could be controlled using a drift-diffusion model of the explore–exploit choice. In this model, variability is controlled by either the signal-to-noise ratio with which reward is encoded (the ‘drift rate’), or the amount of information required before a decision is made (the ‘threshold’). By fitting this model to behavior, we find that while, statistically, both drift and threshold change when people randomly explore, numerically, the change in drift rate has by far the largest effect. This suggests that random exploration is primarily driven by changes in the signal-to-noise ratio with which reward information is represented in the brain.
  • 其他摘要:Abstract Growing evidence suggests that behavioral variability plays a critical role in how humans manage the tradeoff between exploration and exploitation. In these decisions a little variability can help us to overcome the desire to exploit known rewards by encouraging us to randomly explore something else. Here we investigate how such ‘random exploration’ could be controlled using a drift-diffusion model of the explore–exploit choice. In this model, variability is controlled by either the signal-to-noise ratio with which reward is encoded (the ‘drift rate’), or the amount of information required before a decision is made (the ‘threshold’). By fitting this model to behavior, we find that while, statistically, both drift and threshold change when people randomly explore, numerically, the change in drift rate has by far the largest effect. This suggests that random exploration is primarily driven by changes in the signal-to-noise ratio with which reward information is represented in the brain.
国家哲学社会科学文献中心版权所有