标题:microRNA let-7i-5p mediates the relationship between muscle fat infiltration and neck pain disability following motor vehicle collision: a preliminary study
摘要:Abstract Persistent neck-pain disability (PNPD) is common following traumatic stress exposures such as motor vehicle collision (MVC). Substantial literature indicates that fat infiltration into neck muscle (MFI) is associated with post-MVC PNPD. However, little is known about the molecular mediators underlying this association. In the current study, we assessed whether microRNA expression signatures predict PNPD and whether microRNA mediate the relationship between neck MFI and PNPD. A nested cohort of 43 individuals from a longitudinal study of MVC survivors, who provided blood (PAXgene RNA) and underwent magnetic resonance imaging (MRI), were included in the current study. Peritraumatic microRNA expression levels were quantified via small RNA sequencing, neck MFI via MRI, and PNPD via the Neck Disability Index two-weeks, three-months, and twelve-months following MVC. Repeated measures regression models were used to assess the relationship between microRNA and PNPD and to perform mediation analyses. Seventeen microRNA predicted PNPD following MVC. One microRNA, let-7i-5p, mediated the relationship between neck MFI and PNPD. Peritraumatic blood-based microRNA expression levels predict PNPD following MVC and let-7i-5p might contribute to the underlying effects of neck MFI on persistent disability. In conclusion, additional studies are needed to validate this finding.
其他摘要:Abstract Persistent neck-pain disability (PNPD) is common following traumatic stress exposures such as motor vehicle collision (MVC). Substantial literature indicates that fat infiltration into neck muscle (MFI) is associated with post-MVC PNPD. However, little is known about the molecular mediators underlying this association. In the current study, we assessed whether microRNA expression signatures predict PNPD and whether microRNA mediate the relationship between neck MFI and PNPD. A nested cohort of 43 individuals from a longitudinal study of MVC survivors, who provided blood (PAXgene RNA) and underwent magnetic resonance imaging (MRI), were included in the current study. Peritraumatic microRNA expression levels were quantified via small RNA sequencing, neck MFI via MRI, and PNPD via the Neck Disability Index two-weeks, three-months, and twelve-months following MVC. Repeated measures regression models were used to assess the relationship between microRNA and PNPD and to perform mediation analyses. Seventeen microRNA predicted PNPD following MVC. One microRNA, let-7i-5p, mediated the relationship between neck MFI and PNPD. Peritraumatic blood-based microRNA expression levels predict PNPD following MVC and let-7i-5p might contribute to the underlying effects of neck MFI on persistent disability. In conclusion, additional studies are needed to validate this finding.