首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Metal ion removal using waste byssus from aquaculture
  • 本地全文:下载
  • 作者:Devis Montroni ; Giorgia Giusti ; Andrea Simoni
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-79253-7
  • 出版社:Springer Nature
  • 摘要:Byssus is a thread-like seafood waste that has a natural high efficiency in anchoring many metal ions thanks to its richness of diverse functional groups. It also has structural stability in extreme chemical, physical and mechanical conditions. The combination of these properties, absent in other waste materials, has novelty suggested its use as matrix for water remediation. Thus, pristine byssus, upon de-metalation, was studied to remove metal ions from ideal solutions at pH 4 and 7, as model chemical systems of industrial and environmental polluted waters, respectively. The byssus matrix’s uptake of metal ions was determined by ICP-OES and its surface microstructure investigated by SEM. The results showed that the byssus matrix excellently uptakes metal ions slightly reorganizing its surface micro-structure. As example of its efficiency: 50 mg of byssus absorbed 21.7 mg·g−1 of Cd2 from a 10 mM solution at pH 7. The adsorption isotherm models of Freundlich and Langmuir were mainly used to describe the system at pH 7 and pH 4, respectively. In conclusion, we showed that the byssus, a waste material that is an environmental issue, has the potential to purify polluted industrial and environmental waters from metal ions.
  • 其他摘要:Abstract Byssus is a thread-like seafood waste that has a natural high efficiency in anchoring many metal ions thanks to its richness of diverse functional groups. It also has structural stability in extreme chemical, physical and mechanical conditions. The combination of these properties, absent in other waste materials, has novelty suggested its use as matrix for water remediation. Thus, pristine byssus, upon de-metalation, was studied to remove metal ions from ideal solutions at pH 4 and 7, as model chemical systems of industrial and environmental polluted waters, respectively. The byssus matrix’s uptake of metal ions was determined by ICP-OES and its surface microstructure investigated by SEM. The results showed that the byssus matrix excellently uptakes metal ions slightly reorganizing its surface micro-structure. As example of its efficiency: 50 mg of byssus absorbed 21.7 mg·g −1 of Cd 2 from a 10 mM solution at pH 7. The adsorption isotherm models of Freundlich and Langmuir were mainly used to describe the system at pH 7 and pH 4, respectively. In conclusion, we showed that the byssus, a waste material that is an environmental issue, has the potential to purify polluted industrial and environmental waters from metal ions.
国家哲学社会科学文献中心版权所有