首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Genome-wide analysis of the aquaporin genes in melon ( Cucumis melo L. )
  • 本地全文:下载
  • 作者:Alvaro Lopez-Zaplana ; Juan Nicolas-Espinosa ; Micaela Carvajal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-19
  • DOI:10.1038/s41598-020-79250-w
  • 出版社:Springer Nature
  • 摘要:Melon (Cucumis melo L.) is a very important crop throughout the world and has great economic importance, in part due to its nutritional properties. It prefers well-drained soil with low acidity and has a strong demand for water during fruit set. Therefore, a correct water balance—involving aquaporins—is necessary to maintain the plants in optimal condition. This manuscript describes the identification and comparative analysis of the complete set of aquaporins in melon. 31 aquaporin genes were identified, classified and analysed according to the evolutionary relationship of melon with related plant species. The individual role of each aquaporin in the transport of water, ions and small molecules was discussed. Finally, qPCR revealed that almost all melon aquaporins in roots and leaves were constitutively expressed. However, the high variations in expression among them point to different roles in water and solute transport, providing important features as that CmPIP1;1 is the predominant isoform and CmTIP1;1 is revealed as the most important osmoregulator in the tonoplast under optimal conditions. The results of this work pointing to the physiological importance of each individual aquaporin of melon opening a field of knowledge that deserves to be investigated.
  • 其他摘要:Abstract Melon ( Cucumis melo L.) is a very important crop throughout the world and has great economic importance, in part due to its nutritional properties. It prefers well-drained soil with low acidity and has a strong demand for water during fruit set. Therefore, a correct water balance—involving aquaporins—is necessary to maintain the plants in optimal condition. This manuscript describes the identification and comparative analysis of the complete set of aquaporins in melon. 31 aquaporin genes were identified, classified and analysed according to the evolutionary relationship of melon with related plant species. The individual role of each aquaporin in the transport of water, ions and small molecules was discussed. Finally, qPCR revealed that almost all melon aquaporins in roots and leaves were constitutively expressed. However, the high variations in expression among them point to different roles in water and solute transport, providing important features as that CmPIP1;1 is the predominant isoform and CmTIP1;1 is revealed as the most important osmoregulator in the tonoplast under optimal conditions. The results of this work pointing to the physiological importance of each individual aquaporin of melon opening a field of knowledge that deserves to be investigated.
国家哲学社会科学文献中心版权所有