首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1 IA causing sheath blight of rice
  • 本地全文:下载
  • 作者:Prassan Choudhary ; Pallavi Rai ; Jagriti Yadav
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-19
  • DOI:10.1038/s41598-020-79117-0
  • 出版社:Springer Nature
  • 摘要:Rhizoctonia solani is one of the most devastating pathogens. R. solani AG-1 IA causes sheath blight in rice, maize, and other Gramineous plants. Accurate identification is essential for the effective management of this pathogen. In the present study, a set of four primers were designed viz. RSPG1, RSPG2, RSPG4, and RSPG5 for polygalacturonase (PG) gene, an important virulence factor in phytopathogenic fungi. All four primer sets showed specific amplification of 300 bp (RSPG1F/R), 375 bp (RSPG2F/R), 500 bp (RSPG4F/R) and 336 bp (RSPG5F/R) amplicons. q-PCR detection using each primer sets could detect up to 10 pg of DNA. We also designed six primers (RS_pg_F3_1/RS_pg_B3_1, RS_pg_FIP_1.1/RS-pg_BIP_1.1, and RS_pg_LF_1/RS_pg_LB_1) for PG gene. Further, a colorimetric LAMP assay developed yielded visual confirmation of the pathogen within 45 min of sample collection when coupled with rapid high throughput template preparation method (rHTTP) from infected samples. The sensitivity of the LAMP assay was as low as 1.65 fg/µl of template DNA and could effectively detect R. solani AG-1 IA from diseased plant tissues and soil samples. The LAMP assay was highly specific for R. solani as it did not show any amplification with other AG groups of R. solani and closely related fungal and bacterial outgroups. This study will help in designing an effective point of care diagnostic method for early monitoring of R. solani and thereby planning timely preventive measures against the pathogen.
  • 其他摘要:Abstract Rhizoctonia solani is one of the most devastating pathogens. R. solani AG-1 IA causes sheath blight in rice, maize, and other Gramineous plants. Accurate identification is essential for the effective management of this pathogen. In the present study, a set of four primers were designed viz. RSPG1, RSPG2, RSPG4, and RSPG5 for polygalacturonase (PG) gene, an important virulence factor in phytopathogenic fungi. All four primer sets showed specific amplification of 300 bp (RSPG1F/R), 375 bp (RSPG2F/R), 500 bp (RSPG4F/R) and 336 bp (RSPG5F/R) amplicons. q-PCR detection using each primer sets could detect up to 10 pg of DNA. We also designed six primers (RS_pg_F3_1/RS_pg_B3_1, RS_pg_FIP_1.1/RS-pg_BIP_1.1, and RS_pg_LF_1/RS_pg_LB_1) for PG gene. Further, a colorimetric LAMP assay developed yielded visual confirmation of the pathogen within 45 min of sample collection when coupled with rapid high throughput template preparation method (rHTTP) from infected samples. The sensitivity of the LAMP assay was as low as 1.65 fg/µl of template DNA and could effectively detect R. solani AG-1 IA from diseased plant tissues and soil samples. The LAMP assay was highly specific for R. solani as it did not show any amplification with other AG groups of R. solani and closely related fungal and bacterial outgroups. This study will help in designing an effective point of care diagnostic method for early monitoring of R. solani and thereby planning timely preventive measures against the pathogen.
国家哲学社会科学文献中心版权所有