首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Gas hydrate versus seabed morphology offshore Lebu (Chilean margin)
  • 本地全文:下载
  • 作者:Iván Vargas-Cordero ; Umberta Tinivella ; Lucía Villar-Muñoz
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-78958-z
  • 出版社:Springer Nature
  • 摘要:Gas-hydrate occurrences along the Chilean margin have been widely documented, but the processes associated with fluid escapes caused by the dissociation of gas hydrates are still unknown. We report a seabed morphology growth related to fluid migration offshore Lebu associated with mud cones by analysing oxygen and deuterium stable water isotopes in pore water, bathymetric, biological and sedimentological data. A relief was observed at − 127 m water depth with five peaks. Enrichment values of δ18O (0.0–1.8‰) and δD (0.0–5.6‰) evidenced past hydrate melting. The orientation of the relief could be associated with faults and fractures, which constitute pathways for fluid migration. The benthic foraminifera observed can be associated with cold seep areas. We model that the mud cones correspond to mud growing processes related to past gas-hydrate dissociation. The integration of (i) the seismic data analysis performed in the surrounding area, (ii) the orientation of our studied relief, (iii) the infaunal foraminifera observed, (iv) the grain size and (v) the total organic matter and isotope values revealed that this area was formerly characterised by the presence of gas hydrates. Hence, this part of the Chilean margin represents a suitable area for investigating fluid-migration processes.
  • 其他摘要:Abstract Gas-hydrate occurrences along the Chilean margin have been widely documented, but the processes associated with fluid escapes caused by the dissociation of gas hydrates are still unknown. We report a seabed morphology growth related to fluid migration offshore Lebu associated with mud cones by analysing oxygen and deuterium stable water isotopes in pore water, bathymetric, biological and sedimentological data. A relief was observed at − 127 m water depth with five peaks. Enrichment values of δ 18 O (0.0–1.8‰) and δD (0.0–5.6‰) evidenced past hydrate melting. The orientation of the relief could be associated with faults and fractures, which constitute pathways for fluid migration. The benthic foraminifera observed can be associated with cold seep areas. We model that the mud cones correspond to mud growing processes related to past gas-hydrate dissociation. The integration of (i) the seismic data analysis performed in the surrounding area, (ii) the orientation of our studied relief, (iii) the infaunal foraminifera observed, (iv) the grain size and (v) the total organic matter and isotope values revealed that this area was formerly characterised by the presence of gas hydrates. Hence, this part of the Chilean margin represents a suitable area for investigating fluid-migration processes.
国家哲学社会科学文献中心版权所有