首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Vegetation structure determines the spatial variability of soil biodiversity across biomes
  • 本地全文:下载
  • 作者:Jorge Durán ; Manuel Delgado-Baquerizo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-020-78483-z
  • 出版社:Springer Nature
  • 摘要:The factors controlling the spatial variability of soil biodiversity remain largely undetermined. We conducted a global field survey to evaluate how and why the within-site spatial variability of soil biodiversity (i.e. richness and community composition) changes across global biomes with contrasting soil ages, climates and vegetation types. We found that the spatial variability of bacteria, fungi, protists, and invertebrates is positively correlated across ecosystems. We also show that the spatial variability of soil biodiversity is mainly controlled by changes in vegetation structure driven by soil age and aridity. Areas with high plant cover, but low spatial heterogeneity, were associated with low levels of spatial variability in soil biodiversity. Further, our work advances the existence of significant, undescribed links between the spatial variability of soil biodiversity and key ecosystem functions. Taken together, our findings indicate that reductions in plant cover (e.g., via desertification, increases in aridity, or deforestation), are likely to increase the spatial variability of multiple soil organisms and that such changes are likely to negatively impact ecosystem functioning across global biomes.
  • 其他摘要:Abstract The factors controlling the spatial variability of soil biodiversity remain largely undetermined. We conducted a global field survey to evaluate how and why the within-site spatial variability of soil biodiversity (i.e. richness and community composition) changes across global biomes with contrasting soil ages, climates and vegetation types. We found that the spatial variability of bacteria, fungi, protists, and invertebrates is positively correlated across ecosystems. We also show that the spatial variability of soil biodiversity is mainly controlled by changes in vegetation structure driven by soil age and aridity. Areas with high plant cover, but low spatial heterogeneity, were associated with low levels of spatial variability in soil biodiversity. Further, our work advances the existence of significant, undescribed links between the spatial variability of soil biodiversity and key ecosystem functions. Taken together, our findings indicate that reductions in plant cover (e.g., via desertification, increases in aridity, or deforestation), are likely to increase the spatial variability of multiple soil organisms and that such changes are likely to negatively impact ecosystem functioning across global biomes.
国家哲学社会科学文献中心版权所有