首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Computational insights into RNAi-based therapeutics for foot and mouth disease of Bos taurus
  • 本地全文:下载
  • 作者:Tanmaya Kumar Sahu ; Anoop Kishor Singh Gurjar ; Prabina Kumar Meher
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-78541-6
  • 出版社:Springer Nature
  • 摘要:Foot-and-mouth disease (FMD) endangers a large number of livestock populations across the globe being a highly contagious viral infection in wild and domestic cloven-hoofed animals. It adversely affects the socioeconomic status of millions of households. Vaccination has been used to protect animals against FMD virus (FMDV) to some extent but the effectiveness of available vaccines has been decreased due to high genetic variability in the FMDV genome. Another key aspect that the current vaccines are not favored is they do not provide the ability to differentiate between infected and vaccinated animals. Thus, RNA interference (RNAi) being a potential strategy to control virus replication, has opened up a new avenue for controlling the viral transmission. Hence, an attempt has been made here to establish the role of RNAi in therapeutic developments for FMD by computationally identifying (i) microRNA (miRNA) targets in FMDV using target prediction algorithms, (ii) targetable genomic regions in FMDV based on their dissimilarity with the host genome and, (iii) plausible anti-FMDV miRNA-like simulated nucleotide sequences (SNSs). The results revealed 12 mature host miRNAs that have 284 targets in 98 distinct FMDV genomic sequences. Wet-lab validation for anti-FMDV properties of 8 host miRNAs was carried out and all were observed to confer variable magnitude of antiviral effect. In addition, 14 miRBase miRNAs were found with better target accessibility in FMDV than that of Bos taurus. Further, 8 putative targetable regions having sense strand properties of siRNAs were identified on FMDV genes that are highly dissimilar with the host genome. A total of 16 SNSs having > 90% identity with mature miRNAs were also identified that have targets in FMDV genes. The information generated from this study is populated at http://bioinformatics.iasri.res.in/fmdisc/ to cater the needs of biologists, veterinarians and animal scientists working on FMD.
  • 其他摘要:Abstract Foot-and-mouth disease (FMD) endangers a large number of livestock populations across the globe being a highly contagious viral infection in wild and domestic cloven-hoofed animals. It adversely affects the socioeconomic status of millions of households. Vaccination has been used to protect animals against FMD virus (FMDV) to some extent but the effectiveness of available vaccines has been decreased due to high genetic variability in the FMDV genome. Another key aspect that the current vaccines are not favored is they do not provide the ability to differentiate between infected and vaccinated animals. Thus, RNA interference (RNAi) being a potential strategy to control virus replication, has opened up a new avenue for controlling the viral transmission. Hence, an attempt has been made here to establish the role of RNAi in therapeutic developments for FMD by computationally identifying (i) microRNA (miRNA) targets in FMDV using target prediction algorithms, (ii) targetable genomic regions in FMDV based on their dissimilarity with the host genome and, (iii) plausible anti-FMDV miRNA-like simulated nucleotide sequences (SNSs). The results revealed 12 mature host miRNAs that have 284 targets in 98 distinct FMDV genomic sequences. Wet-lab validation for anti-FMDV properties of 8 host miRNAs was carried out and all were observed to confer variable magnitude of antiviral effect. In addition, 14 miRBase miRNAs were found with better target accessibility in FMDV than that of Bos taurus. Further, 8 putative targetable regions having sense strand properties of siRNAs were identified on FMDV genes that are highly dissimilar with the host genome. A total of 16 SNSs having > 90% identity with mature miRNAs were also identified that have targets in FMDV genes. The information generated from this study is populated at http://bioinformatics.iasri.res.in/fmdisc/ to cater the needs of biologists, veterinarians and animal scientists working on FMD.
国家哲学社会科学文献中心版权所有