首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:New insights into the autofluorescence properties of cellulose/nanocellulose
  • 本地全文:下载
  • 作者:Qijun Ding ; Wenjia Han ; Xia Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-78480-2
  • 出版社:Springer Nature
  • 摘要:This work explored the fluorescence properties of nano/cellulose isolated from bleached softwood kraft pulp by TEMPO oxidation. Fluorescence spectra showed that all samples exhibited a typical emission peak at 574 nm due to the probabilistic formation of unsaturated bonds by glycosidic bonds independent of lignin. Increasing the excitation wavelengths (510–530 nm) caused red shift of fluorescence emission peaks (570–585 nm) with unchanged fluorescence intensity. Conversely, changing acid/alkaline conditions led to an increase of fluorescence intensity with no shifting of fluorescence emission peak. This can be attributed to an increase in the polarity of the solution environment but does not cause interaction of functional groups within the system identified by generalized two-dimensional correlation fluorescence spectroscopy. This study provides new insight in applying nano/cellulose with special luminous characteristics in biomedicine area such as multi-color biological imaging and chemical sensing.
  • 其他摘要:Abstract This work explored the fluorescence properties of nano/cellulose isolated from bleached softwood kraft pulp by TEMPO oxidation. Fluorescence spectra showed that all samples exhibited a typical emission peak at 574 nm due to the probabilistic formation of unsaturated bonds by glycosidic bonds independent of lignin. Increasing the excitation wavelengths (510–530 nm) caused red shift of fluorescence emission peaks (570–585 nm) with unchanged fluorescence intensity. Conversely, changing acid/alkaline conditions led to an increase of fluorescence intensity with no shifting of fluorescence emission peak. This can be attributed to an increase in the polarity of the solution environment but does not cause interaction of functional groups within the system identified by generalized two-dimensional correlation fluorescence spectroscopy. This study provides new insight in applying nano/cellulose with special luminous characteristics in biomedicine area such as multi-color biological imaging and chemical sensing.
国家哲学社会科学文献中心版权所有