摘要:We have been studying the role of Hexamethylene bisacetamide (HMBA) Induced Protein 1 (HEXIM1) as a tumor suppressor whose expression is decreased in breast and prostate cancer. The anti-cancer actions of HEXIM1 in melanomas and AML have been reported by other groups. Previous studies have shown that 5-Aza-2′deoxycytidine (5-AzadC), a DNMT1 inhibitor, induces re-expression of tumor suppressor genes by removing/erasing methylation marks from their promoters. Our studies highlighted another mechanism wherein 5-AzadC induced DNA damage, which then resulted in enhanced occupancy of NF-ĸB, P-TEFb, and serine 2 phosphorylated RNA Polymerase II on the HEXIM1 gene. As a consequence, 5-AzadC induced HEXIM1 expression in prostate cancer cell lines and triple negative breast cancers. 5-AzadC-induced DNA damage enhanced P-TEFb occupancy via a mechanism that involved activation of ATR and ATM and induction of NF-ĸB recruitment to the HEXIM1 promoter. Downregulation of NF-ĸB attenuated 5-AzadC-induced HEXIM1 expression in prostate and breast cancer cells. The functional relevance of 5-AzadC-induced HEXIM1 expression is revealed by studies showing the HEXIM1 is required for the induction of apoptosis. Collectively, our findings support a non-epigenetic mechanism for 5-AzadC-induced re-expression of HEXIM1 protein, and may contribute to the clinical efficacy of 5-AzadC.
其他摘要:Abstract We have been studying the role of Hexamethylene bisacetamide (HMBA) Induced Protein 1 (HEXIM1) as a tumor suppressor whose expression is decreased in breast and prostate cancer. The anti-cancer actions of HEXIM1 in melanomas and AML have been reported by other groups. Previous studies have shown that 5-Aza-2′deoxycytidine (5-AzadC), a DNMT1 inhibitor, induces re-expression of tumor suppressor genes by removing/erasing methylation marks from their promoters. Our studies highlighted another mechanism wherein 5-AzadC induced DNA damage, which then resulted in enhanced occupancy of NF-ĸB, P-TEFb, and serine 2 phosphorylated RNA Polymerase II on the HEXIM1 gene. As a consequence, 5-AzadC induced HEXIM1 expression in prostate cancer cell lines and triple negative breast cancers. 5-AzadC-induced DNA damage enhanced P-TEFb occupancy via a mechanism that involved activation of ATR and ATM and induction of NF-ĸB recruitment to the HEXIM1 promoter. Downregulation of NF-ĸB attenuated 5-AzadC-induced HEXIM1 expression in prostate and breast cancer cells. The functional relevance of 5-AzadC-induced HEXIM1 expression is revealed by studies showing the HEXIM1 is required for the induction of apoptosis. Collectively, our findings support a non-epigenetic mechanism for 5-AzadC-induced re-expression of HEXIM1 protein, and may contribute to the clinical efficacy of 5-AzadC.