首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Advanced superhard composite materials with extremely improved mechanical strength by interfacial segregation of dilute dopants
  • 本地全文:下载
  • 作者:Tomohiro Nishi ; Katsuyuki Matsunaga ; Takeshi Mitsuoka
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-78064-0
  • 出版社:Springer Nature
  • 摘要:Control of heterointerfaces in advanced composite materials is of scientific and industrial importance, because their interfacial structures and properties often determine overall performance and reliability of the materials. Here distinct improvement of mechanical properties of alumina-matrix tungsten-carbide composites, which is expected for cutting-tool application for aerospace industries, is achieved via interfacial atomic segregation. It is found that only a small amount of Zr addition is unexpectedly effective to significantly increase their mechanical properties, and especially their bending strength reaches values far beyond those of conventional superhard composite materials. Atomic-resolution STEM observations show that doped Zr atoms are preferentially located only at interfaces between Al2O3 and WC grains, forming atomic segregation layers. DFT calculations indicate favorable thermodynamic stability of the interfacial Zr segregation due to structural transition at the interface. Moreover, theoretical works of separation demonstrate remarkable increase in interfacial strength through the interfacial structural transition, which strongly supports reinforcement of the interfaces by single-layer Zr segregation.
  • 其他摘要:Abstract Control of heterointerfaces in advanced composite materials is of scientific and industrial importance, because their interfacial structures and properties often determine overall performance and reliability of the materials. Here distinct improvement of mechanical properties of alumina-matrix tungsten-carbide composites, which is expected for cutting-tool application for aerospace industries, is achieved via interfacial atomic segregation. It is found that only a small amount of Zr addition is unexpectedly effective to significantly increase their mechanical properties, and especially their bending strength reaches values far beyond those of conventional superhard composite materials. Atomic-resolution STEM observations show that doped Zr atoms are preferentially located only at interfaces between Al 2 O 3 and WC grains, forming atomic segregation layers. DFT calculations indicate favorable thermodynamic stability of the interfacial Zr segregation due to structural transition at the interface. Moreover, theoretical works of separation demonstrate remarkable increase in interfacial strength through the interfacial structural transition, which strongly supports reinforcement of the interfaces by single-layer Zr segregation.
国家哲学社会科学文献中心版权所有