摘要:Serology is essential for Q fever diagnostics, a disease caused by the bacterial pathogen Coxiella burnetii. The gold standard test is an immunofluorescence assay utilizing whole cell antigens, which are both dangerous and laborious to produce. Complexities of the antigen coupled with the subjective nature of the assay lead to decreased uniformity of test results and underscore the need for improved methodologies. Thirty-three C. burnetii proteins, previously identified as immunoreactive, were screened for reactivity to naturally infected goat serum. Based on reactivity, 10 proteins were analyzed in a secondary screen against human serum from healthy donors. Assay sensitivity and specificity ranged from 21 to 71% and 90 to 100%, respectively. Three promising antigens were identified based on receiver operating characteristic curve analysis (CBU_1718, CBU_0307, and CBU_1398). Five multiplex assays failed to outperform the individual proteins, with sensitivities and specificities ranging from 29 to 57% and 90 to 100%, respectively. Truncating the top antigen, CBU_1718, had no effect on specificity (90%); yet sensitivity decreased dramatically (71% to 21%). Through this study, we have expanded the subset of C. burnetii immunoreactive proteins validated by enzyme-linked immunosorbent assay and demonstrate the effect of novel antigen combinations and protein truncations on assay performance.
其他摘要:Abstract Serology is essential for Q fever diagnostics, a disease caused by the bacterial pathogen Coxiella burnetii. The gold standard test is an immunofluorescence assay utilizing whole cell antigens, which are both dangerous and laborious to produce. Complexities of the antigen coupled with the subjective nature of the assay lead to decreased uniformity of test results and underscore the need for improved methodologies. Thirty-three C. burnetii proteins, previously identified as immunoreactive, were screened for reactivity to naturally infected goat serum. Based on reactivity, 10 proteins were analyzed in a secondary screen against human serum from healthy donors. Assay sensitivity and specificity ranged from 21 to 71% and 90 to 100%, respectively. Three promising antigens were identified based on receiver operating characteristic curve analysis (CBU_1718, CBU_0307, and CBU_1398). Five multiplex assays failed to outperform the individual proteins, with sensitivities and specificities ranging from 29 to 57% and 90 to 100%, respectively. Truncating the top antigen, CBU_1718, had no effect on specificity (90%); yet sensitivity decreased dramatically (71% to 21%). Through this study, we have expanded the subset of C. burnetii immunoreactive proteins validated by enzyme-linked immunosorbent assay and demonstrate the effect of novel antigen combinations and protein truncations on assay performance.