摘要:Sleep and 24-h activity rhythm disturbances are associated with development of neurodegenerative diseases and related pathophysiological processes in the brain. We determined the cross-sectional relation of sleep and 24-h activity rhythm disturbances with plasma-based biomarkers that might signal neurodegenerative disease, in 4712 middle-aged and elderly non-demented persons. Sleep and activity rhythms were measured using the Pittsburgh Sleep Quality Index and actigraphy. Simoa assays were used to measure plasma levels of neurofilament light chain, and additionally β-amyloid 40, β-amyloid 42, and total-tau. We used linear regression, adjusting for relevant confounders, and corrected for multiple testing. We found no associations of self-rated sleep, actigraphy-estimated sleep and 24-h activity rhythms with neurofilament light chain after confounder adjustment and correction for multiple testing, except for a non-linear association of self-rated time in bed with neurofilament light chain (P = 2.5*10−4). Similarly, we observed no significant associations with β-amyloid 40, β-amyloid 42, and total-tau after multiple testing correction. We conclude that sleep and 24-h activity rhythm disturbances were not consistently associated with neuronal damage as indicated by plasma neurofilament light chain in this population-based sample middle-aged and elderly non-demented persons. Further studies are needed to determine the associations of sleep and 24-h activity rhythm disturbances with NfL-related neuronal damage.
其他摘要:Abstract Sleep and 24-h activity rhythm disturbances are associated with development of neurodegenerative diseases and related pathophysiological processes in the brain. We determined the cross-sectional relation of sleep and 24-h activity rhythm disturbances with plasma-based biomarkers that might signal neurodegenerative disease, in 4712 middle-aged and elderly non-demented persons. Sleep and activity rhythms were measured using the Pittsburgh Sleep Quality Index and actigraphy. Simoa assays were used to measure plasma levels of neurofilament light chain, and additionally β-amyloid 40, β-amyloid 42, and total-tau. We used linear regression, adjusting for relevant confounders, and corrected for multiple testing. We found no associations of self-rated sleep, actigraphy-estimated sleep and 24-h activity rhythms with neurofilament light chain after confounder adjustment and correction for multiple testing, except for a non-linear association of self-rated time in bed with neurofilament light chain ( P = 2.5*10 −4 ). Similarly, we observed no significant associations with β-amyloid 40, β-amyloid 42, and total-tau after multiple testing correction. We conclude that sleep and 24-h activity rhythm disturbances were not consistently associated with neuronal damage as indicated by plasma neurofilament light chain in this population-based sample middle-aged and elderly non-demented persons. Further studies are needed to determine the associations of sleep and 24-h activity rhythm disturbances with NfL-related neuronal damage.