首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Influence of benthic currents on cold-water coral habitats: a combined benthic monitoring and 3D photogrammetric investigation
  • 本地全文:下载
  • 作者:Aaron Lim ; Andrew J. Wheeler ; David M. Price
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-15
  • DOI:10.1038/s41598-020-76446-y
  • 出版社:Springer Nature
  • 摘要:Strong currents are a key component of benthic habitats by supplying food and nutrients to filter-feeding organisms such as cold-water corals. Although field measurements show that cold-water coral habitats exist in areas of elevated bottom currents, flume studies show that cold-water corals feed more effectively at lower flow speeds. This research aims to explore this disconnect in situ by utilising high spatial resolution ROV photogrammetric data coupled with high temporal resolution in situ acoustic doppler current profile measurements at seven study sites within the upper Porcupine Bank Canyon (uPBC), NE Atlantic. Object-based image analysis of photogrammetric data show that coral habitats vary considerably within the upper canyon. Although there is a regional hydrodynamic trend across the uPBC, this variation is likely driven locally by topographic steering. Although live coral tends not to face directly into the prevailing current direction, preferring lower local flows speeds, they can tolerate exposure to high-flow speeds of up to 114 cm s−1, the highest recorded in a Desmophyllum pertusum habitat. Not only do these high flow speeds supply food and nutrients, they may also help contribute to coral rubble production through physical erosion. These results can be incorporated into simulations of future deep-water habitat response to changing environmental conditions while extending the upper current speed threshold for cold-water corals.
  • 其他摘要:Abstract Strong currents are a key component of benthic habitats by supplying food and nutrients to filter-feeding organisms such as cold-water corals. Although field measurements show that cold-water coral habitats exist in areas of elevated bottom currents, flume studies show that cold-water corals feed more effectively at lower flow speeds. This research aims to explore this disconnect in situ by utilising high spatial resolution ROV photogrammetric data coupled with high temporal resolution in situ acoustic doppler current profile measurements at seven study sites within the upper Porcupine Bank Canyon (uPBC), NE Atlantic. Object-based image analysis of photogrammetric data show that coral habitats vary considerably within the upper canyon. Although there is a regional hydrodynamic trend across the uPBC, this variation is likely driven locally by topographic steering. Although live coral tends not to face directly into the prevailing current direction, preferring lower local flows speeds, they can tolerate exposure to high-flow speeds of up to 114 cm s −1 , the highest recorded in a Desmophyllum pertusum habitat. Not only do these high flow speeds supply food and nutrients, they may also help contribute to coral rubble production through physical erosion. These results can be incorporated into simulations of future deep-water habitat response to changing environmental conditions while extending the upper current speed threshold for cold-water corals.
国家哲学社会科学文献中心版权所有