首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels
  • 本地全文:下载
  • 作者:Satyabrata Nanda ; San-Yue Yuan ; Feng-Xia Lai
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-76198-9
  • 出版社:Springer Nature
  • 摘要:Rice production and sustainability are challenged by its most dreadful pest, the brown planthopper (Nilaparvata lugens Stål, BPH). Therefore, the studies on rice-BPH interactions and their underlying mechanisms are of high interest. The rice ontogenetic defense, such as the role of microRNAs (miRNAs) has mostly been investigated against the pathogens, with only a few reports existing against the insect infestations. Thus, revealing the involvement of rice miRNAs in response to BPH infestations will be beneficial in understanding these complex interactions. In this study, the small RNA profiling of the IR56 rice in response to separate BPH infestations of varied virulence levels identified the BPH-responsive miRNAs and revealed the differential transcript abundance of several miRNAs during a compatible and incompatible rice-BPH interaction. The miRNA sequence analysis identified 218 known and 28 novel miRNAs distributed in 54 miRNA families. Additionally, 138 and 140 numbers of differentially expressed (DE) miRNAs were identified during the compatible and incompatible interaction, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the target gene candidates of DE miRNAs (including osa-miR2871a-3p, osa-miR172a, osa-miR166a-5p, osa-miR2120, and osa-miR1859) that might be involved in the IR56 rice defense responses against BPH infestation. Conversely, osa-miR530-5p, osa-miR812s, osa-miR2118g, osa-miR156l-5p, osa-miR435 and two of the novel miRNAs, including novel_16 and novel_52 might negatively modulate the IR56 rice defense. The expressional validation of the selected miRNAs and their targets further supported the IR56 rice defense regulatory network. Based on our results, we have proposed a conceptual model depicting the miRNA defense regulatory network in the IR56 rice against BPH infestation. The findings from the study add further insights into the molecular mechanisms of rice-BPH interactions and will be helpful for the future researches.
  • 其他摘要:Abstract Rice production and sustainability are challenged by its most dreadful pest, the brown planthopper ( Nilaparvata lugens Stål, BPH). Therefore, the studies on rice-BPH interactions and their underlying mechanisms are of high interest. The rice ontogenetic defense, such as the role of microRNAs (miRNAs) has mostly been investigated against the pathogens, with only a few reports existing against the insect infestations. Thus, revealing the involvement of rice miRNAs in response to BPH infestations will be beneficial in understanding these complex interactions. In this study, the small RNA profiling of the IR56 rice in response to separate BPH infestations of varied virulence levels identified the BPH-responsive miRNAs and revealed the differential transcript abundance of several miRNAs during a compatible and incompatible rice-BPH interaction. The miRNA sequence analysis identified 218 known and 28 novel miRNAs distributed in 54 miRNA families. Additionally, 138 and 140 numbers of differentially expressed (DE) miRNAs were identified during the compatible and incompatible interaction, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the target gene candidates of DE miRNAs (including osa-miR2871a-3p, osa-miR172a, osa-miR166a-5p, osa-miR2120, and osa-miR1859) that might be involved in the IR56 rice defense responses against BPH infestation. Conversely, osa-miR530-5p, osa-miR812s, osa-miR2118g, osa-miR156l-5p, osa-miR435 and two of the novel miRNAs, including novel_16 and novel_52 might negatively modulate the IR56 rice defense. The expressional validation of the selected miRNAs and their targets further supported the IR56 rice defense regulatory network. Based on our results, we have proposed a conceptual model depicting the miRNA defense regulatory network in the IR56 rice against BPH infestation. The findings from the study add further insights into the molecular mechanisms of rice-BPH interactions and will be helpful for the future researches.
国家哲学社会科学文献中心版权所有