首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Upper critical field and superconductor-metal transition in ultrathin niobium films
  • 本地全文:下载
  • 作者:Iryna Zaytseva ; Aleksander Abaloszew ; Bruno C. Camargo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-75968-9
  • 出版社:Springer Nature
  • 摘要:Recent studies suggest that in disordered ultrathin films superconducting (SC) state may be intrinsically inhomogeneous. Here we investigate the nature of SC state in ultrathin Nb films, of thickness d ranging from 1.2 to 20 nm, which undergo a transition from amorphous to polycrystalline structure at the thickness $$d \simeq 3.3$$ nm. We show that the properties of SC state are very different in polycrystalline and amorphous films. The upper critical field ( $$H_{c2}$$ ) is orbitally limited in the first case, and paramagnetically limited in the latter. The magnetic field induced superconductor-metal transition is observed, with the critical field approximately constant or decreasing as a power-law with the film conductance in polycrystalline or amorphous films, respectively. The scaling analysis indicates distinct scaling exponents in these two types of films. Negative contribution of the SC fluctuations to conductivity exists above $$H_{c2}$$ , particularly pronounced in amorphous films, signaling the presence of fluctuating Cooper pairs. These observations suggest the development of local inhomogeneities in the amorphous films, in the form of proximity-coupled SC islands. An usual evolution of SC correlations on cooling is observed in amorphous films, likely related to the effect of quantum fluctuations on the proximity-induced phase coherence.
  • 其他摘要:Abstract Recent studies suggest that in disordered ultrathin films superconducting (SC) state may be intrinsically inhomogeneous. Here we investigate the nature of SC state in ultrathin Nb films, of thickness d ranging from 1.2 to 20 nm, which undergo a transition from amorphous to polycrystalline structure at the thickness $$d \simeq 3.3$$ d ≃ 3.3  nm. We show that the properties of SC state are very different in polycrystalline and amorphous films. The upper critical field ( $$H_{c2}$$ H c 2 ) is orbitally limited in the first case, and paramagnetically limited in the latter. The magnetic field induced superconductor-metal transition is observed, with the critical field approximately constant or decreasing as a power-law with the film conductance in polycrystalline or amorphous films, respectively. The scaling analysis indicates distinct scaling exponents in these two types of films. Negative contribution of the SC fluctuations to conductivity exists above $$H_{c2}$$ H c 2 , particularly pronounced in amorphous films, signaling the presence of fluctuating Cooper pairs. These observations suggest the development of local inhomogeneities in the amorphous films, in the form of proximity-coupled SC islands. An usual evolution of SC correlations on cooling is observed in amorphous films, likely related to the effect of quantum fluctuations on the proximity-induced phase coherence.
国家哲学社会科学文献中心版权所有