首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Active maintenance of eligibility trace in rodent prefrontal cortex
  • 本地全文:下载
  • 作者:Dong-Hyun Lim ; Young Ju Yoon ; Eunsil Her
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-75820-0
  • 出版社:Springer Nature
  • 摘要:Even though persistent neural activity has been proposed as a mechanism for maintaining eligibility trace, direct empirical evidence for active maintenance of eligibility trace has been lacking. We recorded neuronal activity in the medial prefrontal cortex (mPFC) in rats performing a dynamic foraging task in which a choice must be remembered until its outcome on the timescale of seconds for correct credit assignment. We found that mPFC neurons maintain significant choice signals during the time period between action selection and choice outcome. We also found that neural signals for choice, outcome, and action value converge in the mPFC when choice outcome was revealed. Our results indicate that the mPFC maintains choice signals necessary for temporal credit assignment in the form of persistent neural activity in our task. They also suggest that the mPFC might update action value by combining actively maintained eligibility trace with action value and outcome signals.
  • 其他摘要:Abstract Even though persistent neural activity has been proposed as a mechanism for maintaining eligibility trace, direct empirical evidence for active maintenance of eligibility trace has been lacking. We recorded neuronal activity in the medial prefrontal cortex (mPFC) in rats performing a dynamic foraging task in which a choice must be remembered until its outcome on the timescale of seconds for correct credit assignment. We found that mPFC neurons maintain significant choice signals during the time period between action selection and choice outcome. We also found that neural signals for choice, outcome, and action value converge in the mPFC when choice outcome was revealed. Our results indicate that the mPFC maintains choice signals necessary for temporal credit assignment in the form of persistent neural activity in our task. They also suggest that the mPFC might update action value by combining actively maintained eligibility trace with action value and outcome signals.
国家哲学社会科学文献中心版权所有