首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications
  • 本地全文:下载
  • 作者:Manuel Domínguez-Rodrigo ; Gabriel Cifuentes-Alcobendas ; Blanca Jiménez-García
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-75994-7
  • 出版社:Springer Nature
  • 摘要:Bone surface modifications are foundational to the correct identification of hominin butchery traces in the archaeological record. Until present, no analytical technique existed that could provide objectivity, high accuracy, and an estimate of probability in the identification of multiple structurally-similar and dissimilar marks. Here, we present a major methodological breakthrough that incorporates these three elements using Artificial Intelligence (AI) through computer vision techniques, based on convolutional neural networks. This method, when applied to controlled experimental marks on bones, yielded the highest rate documented to date of accurate classification (92%) of cut, tooth and trampling marks. After testing this method experimentally, it was applied to published images of some important traces purportedly indicating a very ancient hominin presence in Africa, America and Europe. The preliminary results are supportive of interpretations of ancient butchery in some places, but not in others, and suggest that new analyses of these controversial marks should be done following the protocol described here to confirm or disprove these archaeological interpretations.
  • 其他摘要:Abstract Bone surface modifications are foundational to the correct identification of hominin butchery traces in the archaeological record. Until present, no analytical technique existed that could provide objectivity, high accuracy, and an estimate of probability in the identification of multiple structurally-similar and dissimilar marks. Here, we present a major methodological breakthrough that incorporates these three elements using Artificial Intelligence (AI) through computer vision techniques, based on convolutional neural networks. This method, when applied to controlled experimental marks on bones, yielded the highest rate documented to date of accurate classification (92%) of cut, tooth and trampling marks. After testing this method experimentally, it was applied to published images of some important traces purportedly indicating a very ancient hominin presence in Africa, America and Europe. The preliminary results are supportive of interpretations of ancient butchery in some places, but not in others, and suggest that new analyses of these controversial marks should be done following the protocol described here to confirm or disprove these archaeological interpretations.
国家哲学社会科学文献中心版权所有