首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Exploring the long-term changes in the Madden Julian Oscillation using machine learning
  • 本地全文:下载
  • 作者:Panini Dasgupta ; Abirlal Metya ; C. V. Naidu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-75508-5
  • 出版社:Springer Nature
  • 摘要:The Madden Julian Oscillation (MJO), the dominant subseasonal variability in the tropics, is widely represented using the Real-time Multivariate MJO (RMM) index. The index is limited to the satellite era (post-1974) as its calculation relies on satellite-based observations. Oliver and Thompson (J Clim 25:1996–2019, 2012) extended the RMM index for the twentieth century, employing a multilinear regression on the sea level pressure (SLP) from the NOAA twentieth century reanalysis. They obtained an 82.5% correspondence with the index in the satellite era. In this study, we show that the historical MJO index can be successfully reconstructed using machine learning techniques and improved upon. We obtain a significant improvement of up to 4%, using the support vector regressor (SVR) and convolutional neural network (CNN) methods on the same set of predictors used by Oliver and Thompson. Based on the improved RMM indices, we explore the long-term changes in the intensity, phase occurrences, and frequency of the winter MJO events during 1905–2015. We show an increasing trend in MJO intensity (22–27%) during this period. We also find a multidecadal change in MJO phase occurrence and periodicity corresponding to the Pacific Decadal Oscillation (PDO), while the role of anthropogenic warming cannot be ignored.
  • 其他摘要:Abstract The Madden Julian Oscillation (MJO), the dominant subseasonal variability in the tropics, is widely represented using the Real-time Multivariate MJO (RMM) index. The index is limited to the satellite era (post-1974) as its calculation relies on satellite-based observations. Oliver and Thompson (J Clim 25:1996–2019, 2012) extended the RMM index for the twentieth century, employing a multilinear regression on the sea level pressure (SLP) from the NOAA twentieth century reanalysis. They obtained an 82.5% correspondence with the index in the satellite era. In this study, we show that the historical MJO index can be successfully reconstructed using machine learning techniques and improved upon. We obtain a significant improvement of up to 4%, using the support vector regressor (SVR) and convolutional neural network (CNN) methods on the same set of predictors used by Oliver and Thompson. Based on the improved RMM indices, we explore the long-term changes in the intensity, phase occurrences, and frequency of the winter MJO events during 1905–2015. We show an increasing trend in MJO intensity (22–27%) during this period. We also find a multidecadal change in MJO phase occurrence and periodicity corresponding to the Pacific Decadal Oscillation (PDO), while the role of anthropogenic warming cannot be ignored.
国家哲学社会科学文献中心版权所有