首页    期刊浏览 2024年12月06日 星期五
登录注册

文章基本信息

  • 标题:Plane photoacoustic wave generation in liquid water using irradiation of terahertz pulses
  • 本地全文:下载
  • 作者:Masaaki Tsubouchi ; Hiromichi Hoshina ; Masaya Nagai
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-75337-6
  • 出版社:Springer Nature
  • 摘要:We demonstrate photoacoustic wave propagation with a plane wavefront in liquid water using a terahertz (THz) laser pulse. The THz light can effectively generate the photoacoustic wave in water because of strong absorption via a stretching vibration mode of the hydrogen bonding network. The excitation of a large-area water surface irradiated by loosely focused THz light produces a plane photoacoustic wave. This is in contrast with conventional methods using absorbers or plasma generation using near-infrared laser light. The photoacoustic wave generation and plane wave propagation are observed using a system with a THz free-electron laser and shadowgraph imaging. The plane photoacoustic wave is generated by incident THz light with a small radiant exposure of < 1 mJ/cm2 and delivered 600 times deeper than the penetration depth of THz light for water. The THz-light-induced plane photoacoustic wave offers great advantages to non-invasive operations for industrial and biological applications as demonstrated in our previous report (Yamazaki et al. in Sci Rep 10:9008, 2020).
  • 其他摘要:Abstract We demonstrate photoacoustic wave propagation with a plane wavefront in liquid water using a terahertz (THz) laser pulse. The THz light can effectively generate the photoacoustic wave in water because of strong absorption via a stretching vibration mode of the hydrogen bonding network. The excitation of a large-area water surface irradiated by loosely focused THz light produces a plane photoacoustic wave. This is in contrast with conventional methods using absorbers or plasma generation using near-infrared laser light. The photoacoustic wave generation and plane wave propagation are observed using a system with a THz free-electron laser and shadowgraph imaging. The plane photoacoustic wave is generated by incident THz light with a small radiant exposure of < 1 mJ/cm 2 and delivered 600 times deeper than the penetration depth of THz light for water. The THz-light-induced plane photoacoustic wave offers great advantages to non-invasive operations for industrial and biological applications as demonstrated in our previous report (Yamazaki et al. in Sci Rep 10:9008, 2020).
国家哲学社会科学文献中心版权所有